-
CellEDIT: Combining the Power of CRISPR with FluidFM® to Provide High-End Engineered Cell Lines as a Service - Session Genome Engineering
Dr. Tobias BeyerDone
-
Keynote Speaker: Evaluation of FluidFM technology for single-cell genome editing - Session - Genome Engineering
Dr. Simona PatangeDone
-
Characterizing Induced Pluripotent Stem Cell-Derived Cardiomyocytes (iPSC-CMs): Insights from Mass Measurements and Mechanical Properties - Session Mechanobiology
Dr. Angelo GaitasDone
-
Quantification of micro/nano objects movement under vortex force by Fluidic Force Microscopy - Session Mechanobiology
Dr. Yonghui ZhangDone
-
Social Activities in Zurich (*)
Done
-
Keynote Speaker: Live-seq: a FluidFM-based single-cell transcriptomics approach to study cellular dynamics and communication - Session Live-seq & Biopsies
Dr. Orane Guillaume-GentilDone
-
Single-cell Nanobiopsy Enables Multigenerational Longitudinal Transcriptomics of Cancer Cells - Session Live-seq & Biopsies
Dr. Fabio MarcuccioDone
-
Closing note - FluidFM User Conference 2023
Done
-
Keynote Speaker: Online Talk - New Advances in Single Cell Mechanics - Session Material Sciences
Gang-Yu LiuDone
-
Registration & Coffee
Done
ETH Zürich
Doctorate at D-BIOL
Abstract:
Endosymbioses are cellular mergers in which one cell lives within another cell, and have led to major evolutionary transitions, most prominently to eukaryogenesis. Generation of synthetic endosymbioses aims to provide a defined starting point for studying fundamental processes in emerging endosymbiotic systems and potentially enable engineering of cells with novel properties. Here, we tested the potential of different bacteria for artificial endosymbiosis in mammalian cells. To this end, we adopted the Fluidic Force Microscopy technology to inject diverse bacteria directly into the cytosol of HeLa cells and examined the endosymbiont-host interactions by real time fluorescence microscopy. Among them, Escherichia coli grew exponentially within the cytoplasm, however, at a faster pace than its host cell. To slow down intracellular growth of E. coli, we introduced auxotrophies in E. coli and demonstrated that the intracellular growth rate can be reduced by limiting uptake of aromatic amino acids. In consequence, the survival of the endosymbiont-host pair was prolonged. The presented experimental framework enables studying endosymbiotic candidate systems at high temporal resolution and at the single cell level. Our work represents a starting point for engineering a stable, vertically inherited endosymbiosis.
References:
[1] Gäbelein, C. G.; Reiter, M. A.; Ernst, C.; Giger, G. H.; Vorholt, J. A. Engineering endosymbiotic growth of E. coli in mammalian cells. ACS Synth Biol 2022. DOI:10.1021/acssynbio.2c00292.
Affiliation:
Sponsors